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The stress collapse in the formation of shear bands in elasto-thermo-viscoplatic materials is

systematically studied within the framework of one-dimensional formulation via analytical and

numerical methods. The elastic energy released in a domain is found to play an important role

in the collapse behavior of shear localization. A non-dimensional parameter named the stability

indicator is introduced to characterize the collapse behavior, with approximate forms of the

incremental governing equations. The stability indicator offers useful information regarding the

degree of severity of an abrupt change of deformations during the stress collapse. Numerical

experiments are carried out to verify the stability indicator by varying material properties.
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1. Introduction

The shear localization into a narrow band de-
velops in a variety of materials, and plays an im-
portant role in the damage mechanism under im-
pact loading conditions. Inhomogeneous deforma-
tions originating from impurities, imperfections,
wave propagation, and other sources begin to grow,
and ultimately a critical condition for localization
is reached. There have been extensive researches
using computational and analytical methods on
this subject.

Machand and Duffy (1988) presented that there
exist three stages of deformations : homogeneous
deformation, followed by the stress collapse where-
in shear localization develops into a narrow band,
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and finally, a post-localization state or fully-de-
veloped state. At the time of the stress collapse,
the intensive localization of the plastic deforma-
tion into a shear band may accompany an abrupt
change of the plastic strain rate. The strong stress
drop may cause a loss of stability in numerical
calculations. Needleman (1988) has shown that
there is a numerical instability during the stress
collapse if a band width is discretized into several
elements to simulate the shear localization in a
viscoplastic material. Batra and Kim (1990) also
obtained unstable solutions during the stress col-
lapse in examining the simple shear deformations
in thermo-viscoplastic materials, taking fine mesh
near the band region, even though they used a hig-
her order method such as the Gear method. Al-
though a number of researches have been made in
experimental, theoretical and numerical investi-
gations on shear localization, there is still a lack
of understanding of how material properties com-
bine to the behavior of the stress collapse in the
formation of shear bands.

The purpose of the present study is to under-
stand the mechanism of the stress collapse of
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shear localization and to explore the role of ma-
terial properties in relation to the behavior dur-
ing the stress collapse. We start from the energy
balance of a system of shear localization for one-
dimensional simple shear deformation under a
constant velocity at the boundary. We introduce
the energy-balance number to explain the col-
lapse behavior of shear localization. This non-
dimensional number turns out to be useful for ex-
plaining a highly strong drop of the stress and a
dramatic increase of the plastic strain rate in a
shear band. As a key expression, we propose a
dimensionless parameter consisting of material
properties and boundary velocity, named the sta-
bility indicator. Despite its underlying assump-
tions, the stability indicator shows very good per-
formances in characterizing the behavior of shear
localization during the stress collapse. As the sta-
bility indicator approaches a limit value, an enor-
mously large plastic strain rate occurs, and the
governing equations become extremely stiff. We
also address important material properties asso-
ciated with the degree of severity of the stress col-
lapse, and illustrate the collapse behavior accord-
ing to the values of the stability indicator.

2. Stress Collapse of Shear
Localization

The detailed processes of the formation of shear
localization are very complicated with thermo-me-
chanical coupling and micro-structural change in
metals. Three stages of deformations in the de-
velopment of shear bands, appearing in the tor-
sional Hopkinson bar test, are clearly observed :
the growth of inhomogeneous deformations, the
stress collapse, and the post-collapse state. Here
we focus on the stress collapse, which occurs when
the nominal strain reaches a critical value.

In general, the shear localization process has
the nature of being one-dimensional in a body,
and the analysis with the simple shear deforma-
tion can capture many important features of shear
localization. Accordingly, we analyze the simple
shear deformation of an infinite plane strain slab
with finite height 2L, as shown in Fig. 1. Note
that the velocity V4 is prescribed on the top and
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Fig. 1 One-dimensional simple model for the
analysis of shear band

the bottom surfaces of the block. The non-zero
components of stress and strain are only shear
terms, which are the functions of time # and the
vertical coordinate x. The governing equations
for the balances of linear momentum and energy
in the one-dimensional problem are written as

ov __ or

0oy = gp 0=¥=<L (1)
12
pc%Zk 8x62 +kry?, 0<x <L (2)

In the above equations, the field variables are
the velocity v, the stress r, the plastic strain rate
77, and the temperature 6. The material parame-
ters o, ¢,k and « denote the density, the specific
heat, the thermal conductivity, and the coefficient
of converting plastic work into thermal energy, re-
spectively. In the present study, we consider the
following types of elasto-thermo-viscoplastic ma-
terials :

t=py° with y°=y—5* (3)
Y= (z,7%.0) (4)

where g is the shear modulus, 7 and 7 are the
elastic and total strain rates, respectively, and the
dot denotes the differentiation with respect to
time.

2.1 Energy balance during the stress col-
lapse
During the stress collapse in the formation of
shear bands, the energy balance neglecting the kine-
tic energy due to the inertia leads to the following
relation :

Poopi+ Petas= Plaiss (5)
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where Pgpp; is the applied power at the boundary,
P.us is the rate of the elastic energy released in
the domain, and Pyss is the dissipation rate of
energy in shear bands. When the stress falls down
strongly, the elastic unloading power Peis may
be much larger than the applied power Pypp;. For
this case, a large amount of input power from the
elastic energy released in the domain is concen-
trated on shear bands as the dissipation power.
As a result, a very narrow shear band should ab-
sorb a large amount of the dissipation power
when the stress falls down strongly. Since the
stress is only a function of time in Eq. (1) in the
absence of the inertia, we can then define the fol-
lowing non-dimensional parameter £ such that

_Pelas_ _ TLZ"/#
E_Pdiss_ )/Lz.-ildx
b T

We call £ the energy-balance number. From the
relation described in Eq. (5), it follows that the
energy-balance number £ for the problem under

(6)

the constant velocity at the boundary, neglecting
the inertia, cannot be larger than one.

We first consider the release of unloading elas-
tic energy during the stress collapse for the sim-
ple shear model given in Fig. 1, wherein the shear
band width is 25. Here, we assume a constant
velocity V5 imposed at the upper and the lower
boundaries. Since the plastic strain rate outside
the shear band is nearly zero during the stress col-
lapse, the constitutive equations inside and out-
side the shear band may be assumed to take the
following different forms :

t=p(y—7*) for |x|<38 (7a)

t=py for |x|>08 (7b)

From the velocity boundary condition, we can
obtain the compatibility condition

[yt [ 3 de=v (8)

Substituting the constitutive equation outside the
shear band into Eq. (8) gives

/057'/a’x=%—(L—6) 9)
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Integrating Eq. (7a) and applying Eq.(9), the
following expression is obtained :

L ¢
/0 7 dr=Vi—L-, (10)

The last term on the right-hand side of Eq. (10)
corresponds to the velocity at the boundary from
the elastic strain rate. Therefore, we see that the
applied power on the boundary and the elastic
power released throughout the domain are con-
centrated on the shear band in the form of plastic
work, as both sides of Eq. (10) are multiplied by
the stress 7. An excessively large amount of elastic
energy released during the stress collapse may
give rise to an extremely large value of the plastic
strain rate inside the shear band, together with
an abrupt collapse of the stress. As a result, the
system of shear localization exhibits an extremely
stiff behavior as £ in Eq. (6) approaches one.

If the shear modulus g is large and the stress
drop rate 7 is not too severe, the velocity from
the elastic strain rate, given by the second term in
Eq. (10), may be much smaller than the prescrib-
ed velocity V;. For this case, Eq. (10) can be ap-
proximated by

/Osyf’dxzvo (1)

In the post-localization regime, the stress rate is
small under the velocity boundary condition, and
the above approximation is valid. For thermo-
viscoplastic materials, the relation between the
width of the shear band and the maximum plastic
strain rate can be obtained from this approxima-
tion (Wright, 1987 ; Kim and Im, 1999).

2.2 Approximate analysis of the collapse
behavior

Our aim here is to introduce a dimensionless
parameter indicative of the collapse behavior of
shear localization in terms of material properties
and boundary velocity. To obtain a complete and
exact solution to the problem of shear banding
seems impossible because of the non-linearity of
the governing equations. However, the major fea-
tures of the collapse behavior of shear localiza-
tion can be observed by taking a linearization and
a simplification of the governing equations.
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As mentioned before, we neglect the inertia in
the equation of motion, and consider the afore-
mentioned simple shear deformation under the
prescribed velocity Vo We examine the increment-
al equilibrium right after the onset of shear loc-
alization, of which the major mechanism is ther-
mal softening. Making a simplification in Eq.
(10) such that the distribution of the plastic strain
rate inside the shear band is uniform, we can write
the incremental form as

Arzp%At—,u%Ay" (12)
where A means the incremental operator. The sim-
plified incremental equation includes the com-
patibility for the velocity at the boundary as well
as the relaxation of stress due to the plastic flow
in the shear band.

The heat diffusion at the early time of the stress
collapse does not take up a large portion in the
energy equation (Glimm et al., 1996 ; DiLellio
and Olmstead, 1997). Hence, we shall disregard
the heat diffusion in the energy equation, and
then following incremental equation after the on-
set of shear localization is obtained :

ocAO=kn(1+b7")™(1—al) Ay? (13)

We restrict our attention, for illustration, to the
following specific form of the flow rule, based on
Litonski’s flow rule (Litonski, 1977), in the ab-
sence of strain hardening effects :

r=n(1+b67")™(1—ab) (14)

where @, b, m, and © are the material parame-
ters. The strain hardening is usually neglected in
comparison with the strain rate hardening as the
plastic strain increases dramatically for metals
(Merzer, 1982). We therefore restrict ourselves to
the flow rule without the strain hardening, and
this simplification will hardly make a difference
regarding the basic physics of the thermo-me-
chanical deformation during the stress collapse.
The strain rate hardening parameter # is very
small in most metals, and the temperature incre-
ment grows linearly with the plastic strain incre-
ment as shown in Eq. (13). As a result, the incre-
mental form of the flow rule is approximately
written as

Table 1 Reference material properties

Properties Symbols Values
Density 0 7860.0 kg/m?®
Specific heat c 473.0 J/kgK
Thermal conductivity k 49.2 W/mK
Dissipation factor K 1.0
Shear modulus Y 8.0X 10 N/m?

Reference shear stress i) 6.02 X 108 N/m?
Strain rate sensitivity m 0.0251
Reference strain rate -1 1.0X 107471
Softening coefficient a 6.43X107*K!
Ar= (=) an(1+b77)"A0 (15)

Eq. (15) means that the thermal softening has
more significant contribution to the stress col-
lapse than the strain rate hardening.

We want to find a simple approximation for
the relations described in Egs. (13), (14) and
(15), which represent the incremental quantities
right after the onset of shear localization. Gener-
ally, the plastic strain rate 7” at the beginning
of the stress collapse has a similar value to the
nominal strain rate V,/L. Hence, we take (bVy/
L)™ for a representative value of (1+by?)"
due to b7?>1 (see Table 1). Moreover, for the
sake of simplicity, we neglect the (1 —a0) term in
Eq. (14) because the temperature is not high at
the beginning of the stress collapse, based upon
a@<1. This simplification minimizes the non-
linearity of the constitutive equation to facilitate
the illustration of the underlying mechanism of
shear localization. Accordingly, Eqgs. (13) and (15)
become

akw (bVo/L)*™

Arx(—) oc

Ay? (16)
The numerical results will justify these approxi-
mations in that a non-dimensional parameter
from Eq. (16) provides a good indication for the
collapse behavior of shear localization. Combin-
ing Egs. (12) and (16) gives the following rela-
tions :

At :<1—I§*>% (17)
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A= CnliEw) T (18)
o ka(bVe/L)™"BL

A meaningful solution to Egs. (12) and (16) is
only possible when £*<1 so that the plastic strain
rate inside the shear band remains a finite value.
Ultimately, for E_*Zl, there will be no bounded
solution to Egs. (12) and (16). In this case, the
jumps in 7” and ror the infinite values of ¥” and
T near the critical time are apparent from Egs.
(17) and (18).

We now turn our attention to the physical in-
terpretation of the dimensionless parameter £*.
Multiplying the numerator and the denominator
of £* by A@ in Eq. (19), we see from Egs. (14),
(16) and (19) that £* is nothing but the ratio of
the portion converted into heat out of the elastic
energy (—)zLAz/p released in the domain to
the heat energy ocSA@ that the shear band can
absorb. Noting that ocdAG/ k is just the dissipa-
tion increment while ¢A@ (b Vy/L)*" &L/ 1t indi-
cates the elastic energy released in the domain, we
see that £* has the same interpretation as &.

The stress collapse starts from the shear band
region, and the unloading wave propagates to the
boundary region in the presence of the inertia, so
that the unloading occurs sequentially from the
center to the boundary. Therefore, the elastic en-
ergy release rate for this sequential stress collapse
is less than the value of the no-inertia case where-
in the stress collapse occurs almost instantane-
ously throughout the domain. Furthermore, the
applied energy at the boundary and the unloading
elastic energy are converted into the kinetic ener-
gy over the entire domain as well as the dissipa-
tion energy inside shear bands. For a short time,
the unloading waves with elastic wave speed travel
back and forth between the boundary and the cen-
ter, and the stress and the plastic strain rate at the
center may oscillate.

In the finite element computation, the conse-
quence of the aforementioned observation is link-
ed to the mesh dependence during the stress col-
lapse. The maximum plastic strain rate 7” of a
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FEM solution is determined from the resolution
capacity of a finite element mesh when #” in-
creases to an extremely large value. A large value
of 7* will be obtained, as the finite element mod-
el is discretized into a finer mesh for not small
values of £*. In this case, the shear band is too
thin, and a fine refinement enough to capture the
steep deformation across the shear band is re-
quired. When the mesh is discretized further as
&* approaches 1, we may encounter numerical
instability or ill-conditioning in finding the solu-
tion due to the deformation approaching a high-
ly stiff behavior with an extremely large plastic
strain rate ”. For coarse meshes, which are not
fine enough to represent a narrow shear band or
a large 7”, this numerical instability may be avoid-
ed, but the instability mode becomes diffusive and
filtered out.

As in the aforementioned discussion, the ex-
pression for £&* may provide information regard-
ing the degree of severity of the instability dur-
ing the stress collapse. However, &* itself invol-
ves the thickness § of the shear band. It would be
very informative and desirable to have a dimen-
sionless parameter like £* in terms of material
properties and boundary velocity only. The half
band width & in Eq. (19) may be determined by
material properties and boundary velocity, but
it is not easy to find the band width at the onset
of localization. However, numerical experiments
(see Fig. 7) show that the band width at the cri-
tical time is approximately proportional to the
value at the post-collapse stage. Batra and Chen
(2001) showed the dependence of the band width
with the drop of the shear stress in the formation
of shear band. The half band width at the post
state was proposed by Kim and Im (1999) such
that

mk

~ -1 _
Opost =cosh™ (2G 1)—/ca/(bVo/L)"’foVo

(20)
where G is the constant. Accordingly, we re-
place the shear band width & in Eq. (20) by Spos:
in Eq.(20) for establishing a non-dimension-
al parameter in terms of material properties and
boundary velocity. Dropping off the constant
term cosh™(2G—1) in Eq. (20), we may define
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the following dimensionless number.

Ka’(bVo/ L)@ L Vs
ocmkp

&= (21)
We call € the stability indicator. Note that &
does not take the same value as & or £* because
of approximations made so far. If & approaches
a limit value &, that corresponds to £— 1, ex-
tremely stiff changes of the stress and the plastic
strain rate may occur. It may be impossible to carry
out numerical computations passing the stress
collapse for £ close to &; unless the mesh is coarse
enough to filter out the instability mode. There
are many parameters in Eq. (21) involved in the
stability of shear localization. First of all, the
elasticity plays an important role in association
with the collapse behavior, as manifested by the
fact that the stability indicator & approaches zero
as the shear modulus p goes to infinity or the
material becomes rigid-viscoplastic. The changes
of the reference shear stress 7 and the thermal
softening coefficient @ have a prominent influence
upon the collapse behavior of shear localization,
as evidenced by Eq.(21). Larger stability indi-
cator is achieved as the density p, the specific heat
¢, the strain rate sensitivity s and the conduc-
tivity % decrease. DiLellio and Olmstead (2003)
showed that the OFHC copper does not exibit the
dramatic drop in shear stress associated with the
formation of a shear band. On the contrary, they
observed a strong stress drop and oscillations of
the plastic strain rate for the case of the 4340 steel.
The reason of different behaviors for these ma-
terials is that the OFHC copper has much smaller
value of the stability indicator compared to the
4340 steel.

3. Numerical Experiments

In numerical calculations of the shear localiza-
tion in elasto-thermo-viscoplastic materials, the
stability of the numerical scheme is an important
consideration. Hence, we simultaneously solve the
coupled equations with a proper updating scheme
for the state variables instead of the staggered
algorithm in which the mechanical field variables
are fixed during the calculation of the thermal

field. The trapezoidal scheme is chosen for in-
tegrating the energy equation while the iterative
backward Euler scheme (Lush et al., 1989) is
used for updating the state variables in the visco-
plastic constitutive equation.

We use the flow rule given in Eq. (14) for the
one-dimensional simple model with height L=
3.47X107*m, and the reference material proper-
ties are listed in Table 1. In numerical experi-
ments, the material properties are varied to in-
vestigate the collapse behavior of shear localiza-
tion. In order to facilitate the initiation of locali-
zation, we assume a small perturbation of the
initial temperature at the center. The initial tem-
perature perturbations in terms of the non-dimen-
sional variable £ are given as follows :

82,00 =0.1[1—(%)?]°e™5®" (22)
The time for the onset of shear localization is
known to be dependent upon the size of the initial
perturbations (Wright and Walter, 1987).

All finite elements for the displacement and the
temperature fields have linear polynomials for
interpolation, and the one point integration rule
is employed. To obtain a highly refined mesh in
one-dimensional problems near the center region
wherein the localization occurs, we construct the
finite element mesh according to the following
equation

xz:( ZEI )rL, 1<i<N+1 (23)

where N is the total number of elements, and ¥
is the refinement index.

3.1 Collapse behavior

In this section, numerical simulations are carri-
ed out to examine the development of the shear
band depending upon the energy-balance number
&, the stability indicator &, and the mesh re-
finement. To observe the behaviors of numerical
solutions, we vary the shear modulus g, asso-
ciated with the rate of elastic energy released in
the domain. In order to exclude the influence of
the inertia from the numerical solutions in rela-
tion to the energy-balance number and the mesh
refinement, we neglect the inertia term in these
analyses. The constant velocity V5/L=150001/s
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Fig. 2 Energy-balance number £ versus the shear
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modulus in numerical computations

is prescribed at the boundary, and the results are
presented in Fig. 2. As the shear modulus z de-
creases, the energy-balance number & given in
Eq. (6) approaches 1.0. As a consequence, nu-
merical solutions for & approaching 1 show an
extremely stiff behavior accompanying a large
plastic strain rate inside a very narrow band as
the mesh is refined.

The material properties in Table 1 are utilized
to define the reference value &, of the stabili-
ty indicator. In the numerical analyses to fol-
low, three cases are calculated depending upon
the stability indicator &:
1/10 times and 1/100 times the reference value.

this reference value,

The last two values of the stability indicators
are obtained by taking 10 times and 100 times
the reference shear modulus, respectively. As evi-
denced later (see Fig. 6), the conclusions to fol-
low remain unchanged even though £ is adjusted
by changing the other properties like @, w», o,
etc. instead of g, i.e. the consequences remain
the same regardless of how £ is set up. We take
the mesh refinement according to the refinement
index 7 in Eq. (23).

To examine the behaviors of the numerical
solutions depending upon the mesh refinement
and the stability indicator &, we obtain the plot
of the plastic strain rate 7” versus the nominal
strain 7, and the plot of the stress r versus ¥
for the aforementioned three stability indicators
and for different mesh refinements. Note that the
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Fig. 3 Numerical results for three stability indicators
when mesh refinement index 7 is 1.0; (a)
plastic strain rate; (b) stress in the first ele-
ment

nominal strain ¥ is a time parameter, and the
plastic strain rate 7” and the stress z on the plot
have been computed on the element closest to the
specimen center (x=0). Fig. 3 through Fig. 5
show the plastic strain rate and the shear stress
versus the nominal strain for the mesh refinement
index »=1.0, »=1.5, and »=2.0, respectively. As
seen in Fig. 3(a), only a minor overshoot of #”
is obtained for »=1.0 at £=&,.;, which is the
reference stability indicator. On the other hand,
a large overshoot of 7* is observed at E=E&s
for »=1.5 and »=2.0, as seen in Figs. 4(a) and
5(a). In the coarse mesh of »=1.0, the deforma-
tion in the shear band is smeared into one large
element, which results from the uniform spacing,
and the genuine shear localization is not cap-
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Fig. 4 Numerical results for three stability indicators
when mesh refinement index 7 is 1.5; (a)
plastic strain rate; (b) stress in the first ele-
ment

tured. As the finite element refinement proceeds,
the numerical solutions show an increasingly large
overshoot of the plastic strain rate 7? for E=& oy,
and they tend to capture the shear localization.
For »=2.0, the numerical instability was enco-
untered for £=&.s, and the computation could
proceed no longer (see Fig. 5). As discussed in
Section 2.1, this implies that an excessive elas-
tic energy released in the domain is concentrated
into a narrow shear band during a strong stress
collapse. As a consequence of this, the plastic
strain rate in the shear band increases to an ex-
tremely large value, and the time step required in
numerical computation becomes too short to cov-
er a practically meaningful span of deformations.
However, there are no difficulties in numerical
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Fig. 5 Numerical results for three stability indicators
when mesh refinement index 7 is 2.0; (a)
plastic strain rate; (b) stress in the first ele-
ment

computations for the lower values of &, ie. £=
Erer/10 and E=E,.,/100, as shown in Figs. 5(a)
and 5(b). We can obtain the numerical solutions
with fine mesh of »=2.0 for these lower values of
the stability indicators.

We now verify the stability indicator with re-
gard to the variation of material properties. We
examine whether or not the numerical instability
occurs, for varying values of material properties,
at the same value of the stability indicator E=§,,
which indicates the limit value of & wherein the
numerical instability occurs first for a sufficiently
small time step (A¢=1.0X10"") and a fine mesh
(»=5.0). A very small time step and fine mesh
are essential for removing the dependency of the
instability occurrence on the time step and mesh.
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by Egq.(21), respectively, to give the limit

obtained by numerical calculations and

value &,=3.24 according to the changes of
material properties

The limit shear moduli g

are calculated in ac-
cordance with Eq.(21) corresponding to the li-
mit stability indicator £,=3.24 in numerical com-
putations. This limit stability indicator has been
computed, employing the material data in Table 1
and decreasing the shear modulus gradually until
the numerical instability is first encountered. On
the other hand, the limit shear moduli g*" that
lead to numerical instability with the sufficient-
ly fine mesh (»=5.0) and the small time step
(At=1.0X107") are obtained. The comparisons

anal

of yi

num

and " are plotted versus the variation

of material properties in Fig. 6. The two shear

anal

moduli g e

and " show an excellent consis-
tency with each other with respect to the variation
of material properties — the boundary velocity
T4, the density o, the reference shear stress 7,
the thermal conductivity %, and the coefficient
of thermal softening @. This confirms the fact
that the stability indicator £ characterizes the col-
lapse behavior of shear localization very well.
Furthermore, the justification for replacing the
band width in Eq. (19) by Eq. (20) is shown by
Fig. 7, in which the band width at the critical
strain is approximately proportional to the value
at the post-collapse state. The critical strain is
defined by the time of the maximum change of
the plastic strain rate in the shear band. Note that
the boundary of the shear band is defined to be
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Fig. 7 Relation between shear band widths at the
critical strain and at the post state

the one-tenth valued point of the plastic strain
rate at the center. Taken together, we conclude
that Eq. (21) provides a good indicator for the
collapse behavior of shear localization in elasto-
thermo-viscoplastic materials.

As discussed in Section 2, near £=1 there may
occur a dramatic change in 7” and ¢ with regard
to the time parameter 7. Such a tendency at the
critical strain accompanies the mesh-dependence
of the numerical solution and the abrupt decrease
of the width of the shear band. The regions of
numerical stability and instability, depending up-
on the smallest element size and the stability
indicator &, are presented together with &; in
Fig. 8. It is noted that the region of stability for
numerical solution is enlarged as the smallest ele-
ment size increases beyond the half band width
Opost Of the post stage because the shear band is
smeared into one large element. This implies that
stable computation is possible even beyond the
limit stability indicator &, though it fails to lead
to an accurate solution near the shear band when
the finite element mesh is coarse enough to cause
the smearing of the shear localization. However,
there is no change in the size of the two regions or
in the critical value of the stability indicator as
the element size becomes sufficiently small below

617031.‘ .

3.2 [Inertia

As previously mentioned, the behavior during
the stress collapse without the inertia cannot be
calculated by numerical methods if the stability
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Fig. 8 Stability indicator in numerical computations
with varying mesh refinements
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Fig. 9 The stress at the center for £=2.0&, and £=
O.O{-Tl as a function of the nominal strain when
the inertia term is included in numerical com-
putations

indicator £ is larger than the limit value. How-
ever, the stabilizing effect of the inertia may alle-
viate this difficulty because the stress falls sequen-
tially from the center to the boundary, and the
kinetic energy absorbs the elastic unloading ener-
gy. In Fig. 9, the numerical calculations for £=
2.0€, and »=5.0, which lead to the numerical
instability for the no-inertia case, pass the critical
strain and produce a severe oscillation during the
stress collapse when the inertia term is taken into
account. The oscillatory behaviors of the plastic
strain rate and the stress after the onset of shear
localization have been also reported by Fressengeas
(1989). This is due to the rebound of the unload-
ing wave at the boundary when the inertia term

absorbs a large amount of the elastic energy re-
leased in the domain. On the contrary, there is no
oscillation for the lower stability indicator &=
0.2, (see Fig. 9). For a small value of &,
-elatively small unloading elastic energy released
in the domain does not yield oscillatory behaviors
during the stress collapse.

4. Conclusions

The formation of shear bands was investigated
with a view to exploring the behavior of stress
collapse of shear localization in elasto-thermo-
viscoplastic materials. We explain the collapse
behavior in terms of the energy-balance number,
which is the ratio of the rate of the unloading
elastic energy released to the rate of the energy
dissipated in a shear band. From a simplified
model, the stability indicator £ is introduced in
order to gain an insight into the effects of material
properties on the collapse behavior, carrying a
meaning similar to the energy-balance number
&. The energy-balance number and the stability
indicator play important roles in understanding
computational difficulties during the stress col-
lapse in the development of shear bands. The gov-
erning equations become extremely stiff when the
energy-balance number £ approaches one, and
an extremely large plastic strain rate is observed
inside the shear band during the stress collapse.

Although simplifications are made to develop
the stability indicator &, the validity of this non-
dimensional parameter expressed by material pro-
perties and boundary velocity was verified through
a series of numerical experiments. We addressed
material properties which have a significant effect
on the collapse behavior of shear localization.
Moreover, the mesh refinement was explained in
conjunction with the stability indicator &.
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